541 research outputs found

    Doppler sodar observations of the winds and structure in the lower atmosphere over Fairbanks, Alaska

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2007Fairbanks, Alaska (64°49ʹ N, 147°52ʹ W) experiences strong temperature inversions which when combined with the low wind speeds prevailing during the winter cause serious air pollution problems. The SODAR (Sound Detection And Ranging) or acoustic sounder is a very useful instrument for studying the lower atmosphere as it can continuously and reliably measure the vertical profiles of wind speed and direction,vertical motions, turbulence and the thermal structure in the lower part of the troposphere. A Doppler sodar was operated from December 2005 to April 2006 at the National Weather Service site in Fairbanks. The wind observations from the sodar indicate that the majority of the winds during the winter months were from the North, Northeast or the East, which is in good agreement with the radiosonde measurements and the long term trends in the wind patterns over Fairbanks area. Case studies were carried out using the sodar data depicting drainage winds, low-level jets, formation and breakup of inversions and estimation of the mixing layer height.1. Introduction -- 1.1. Climatic features in Fairbanks during winter -- 1.1.1. Temperature inversions -- 1.1.2. Valley winds and drainage winds -- 1.1.3. Urban heat island -- 1.1.4. Air pollution and ice fog -- 1.2. SODAR and its applications -- 1.2.1 Acoustic sounder observations at Fairbanks in the past -- 2. Theory and instrumentation 2.1. Estimation of Ct² -- 2.1.1. Scattering theory -- 2.1.2. Sodar equation -- 2.2. Wind speed and direction -- 2.3. Sodar installation and data acquisition -- 2..4. Sodar dataset and additional sources of data -- 2.5. Algorithm to detect strong layers of temperature inversion -- 3. Results and discussion -- 3.1. Results from the inversion detection algorithm -- 3.1.1. Diurnal variations in inversion characteristics -- 3.1.2. Effect of cloud cover on inversion characteristics -- 3.2. Wind observations from sodar data -- 3.3. Case studies from sodar observations -- 3.3.1. Drainage winds overflowing the stable layer of air beneath -- 3.3.2. Nocturnal jet associated with a temperature inversion -- 3.3.3. Destruction of an inversion due to forced mixing and increasing cloud cover -- 3.3.4. Estimation of the mixing layer height from the backscatter intensity -- 4. Conclusions and future work -- References

    Predicting Performance of Channel Assignments in Wireless Mesh Networks through Statistical Interference Estimation

    Get PDF
    Wireless Mesh Network (WMN) deployments are poised to reduce the reliance on wired infrastructure especially with the advent of the multi-radio multi-channel (MRMC) WMN architecture. But the benefits that MRMC WMNs offer viz., augmented network capacity, uninterrupted connectivity and reduced latency, are depreciated by the detrimental effect of prevalent interference. Interference mitigation is thus a prime objective in WMN deployments. It is often accomplished through prudent channel allocation (CA) schemes which minimize the adverse impact of interference and enhance the network performance. However, a multitude of CA schemes have been proposed in research literature and absence of a CA performance prediction metric, which could aid in the selection of an efficient CA scheme for a given WMN, is often felt. In this work, we offer a fresh characterization of the interference endemic in wireless networks. We then propose a reliable CA performance prediction metric, which employs a statistical interference estimation approach. We carry out a rigorous quantitative assessment of the proposed metric by validating its CA performance predictions with experimental results, recorded from extensive simulations run on an ns-3 802.11g environment

    Editorial: HDAC inhibition begets more MDSCs

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142056/1/jlb0679.pd

    Reliable Prediction of Channel Assignment Performance in Wireless Mesh Networks

    Get PDF
    The advancements in wireless mesh networks (WMN), and the surge in multi-radio multi-channel (MRMC) WMN deployments have spawned a multitude of network performance issues. These issues are intricately linked to the adverse impact of endemic interference. Thus, interference mitigation is a primary design objective in WMNs. Interference alleviation is often effected through efficient channel allocation (CA) schemes which fully utilize the potential of MRMC environment and also restrain the detrimental impact of interference. However, numerous CA schemes have been proposed in research literature and there is a lack of CA performance prediction techniques which could assist in choosing a suitable CA for a given WMN. In this work, we propose a reliable interference estimation and CA performance prediction approach. We demonstrate its efficacy by substantiating the CA performance predictions for a given WMN with experimental data obtained through rigorous simulations on an ns-3 802.11g environment.Comment: Accepted in ICACCI-201

    Radio Co-location Aware Channel Assignments for Interference Mitigation in Wireless Mesh Networks

    Full text link
    Designing high performance channel assignment schemes to harness the potential of multi-radio multi-channel deployments in wireless mesh networks (WMNs) is an active research domain. A pragmatic channel assignment approach strives to maximize network capacity by restraining the endemic interference and mitigating its adverse impact on network performance. Interference prevalent in WMNs is multi-faceted, radio co-location interference (RCI) being a crucial aspect that is seldom addressed in research endeavors. In this effort, we propose a set of intelligent channel assignment algorithms, which focus primarily on alleviating the RCI. These graph theoretic schemes are structurally inspired by the spatio-statistical characteristics of interference. We present the theoretical design foundations for each of the proposed algorithms, and demonstrate their potential to significantly enhance network capacity in comparison to some well-known existing schemes. We also demonstrate the adverse impact of radio co- location interference on the network, and the efficacy of the proposed schemes in successfully mitigating it. The experimental results to validate the proposed theoretical notions were obtained by running an exhaustive set of ns-3 simulations in IEEE 802.11g/n environments.Comment: Accepted @ ICACCI-201

    Near Optimal Channel Assignment for Interference Mitigation in Wireless Mesh Networks

    Get PDF
    In multi-radio multi-channel (MRMC) WMNs, interference alleviation is affected through several network design techniques e.g., channel assignment (CA), link scheduling, routing etc., intelligent CA schemes being the most effective tool for interference mitigation. CA in WMNs is an NP-Hard problem, and makes optimality a desired yet elusive goal in real-time deployments which are characterized by fast transmission and switching times and minimal end-to-end latency. The trade-off between optimal performance and minimal response times is often achieved through CA schemes that employ heuristics to propose efficient solutions. WMN configuration and physical layout are also crucial factors which decide network performance, and it has been demonstrated in numerous research works that rectangular/square grid WMNs outperform random or unplanned WMN deployments in terms of network capacity, latency, and network resilience. In this work, we propose a smart heuristic approach to devise a near-optimal CA algorithm for grid WMNs (NOCAG). We demonstrate the efficacy of NOCAG by evaluating its performance against the minimal-interference CA generated through a rudimentary brute-force technique (BFCA), for the same WMN configuration. We assess its ability to mitigate interference both, theoretically (through interference estimation metrics) and experimentally (by running rigorous simulations in NS-3). We demonstrate that the performance of NOCAG is almost as good as the BFCA, at a minimal computational overhead of O(n) compared to the exponential of BFCA

    A Novel Beamformed Control Channel Design for LTE with Full Dimension-MIMO

    Get PDF
    The Full Dimension-MIMO (FD-MIMO) technology is capable of achieving huge improvements in network throughput with simultaneous connectivity of a large number of mobile wireless devices, unmanned aerial vehicles, and the Internet of Things (IoT). In FD-MIMO, with a large number of antennae at the base station and the ability to perform beamforming, the capacity of the physical downlink shared channel (PDSCH) has increased a lot. However, the current specifications of the 3rd Generation Partnership Project (3GPP) does not allow the base station to perform beamforming techniques for the physical downlink control channel (PDCCH), and hence, PDCCH has neither the capacity nor the coverage of PDSCH. Therefore, PDCCH capacity will still limit the performance of a network as it dictates the number of users that can be scheduled at a given time instant. In Release 11, 3GPP introduced enhanced PDCCH (EPDCCH) to increase the PDCCH capacity at the cost of sacrificing the PDSCH resources. The problem of enhancing the PDCCH capacity within the available control channel resources has not been addressed yet in the literature. Hence, in this paper, we propose a novel beamformed PDCCH (BF-PDCCH) design which is aligned to the 3GPP specifications and requires simple software changes at the base station. We rely on the sounding reference signals transmitted in the uplink to decide the best beam for a user and ingeniously schedule the users in PDCCH. We perform system level simulations to evaluate the performance of the proposed design and show that the proposed BF-PDCCH achieves larger network throughput when compared with the current state of art algorithms, PDCCH and EPDCCH schemes

    Role of SOCS proteins in FLT3-ITD and BCR/ABL mediated leukemogenesis

    Get PDF
    Acute myeloid/lymphoid leukemia is a fatal hematological malignancy characterized by accumulation of nonfunctional, immature blasts, which interferes with the production of normal blood cells. Activating mutations of receptor tyrosine kinases are common genetic lesions in leukemia. FLT3-ITD is a frequent activating mutation found in AML patients, leading to uncontrolled proliferation of leukemic blasts. FLT3-ITD directly activates STAT5, leading to the induction of STAT5 target gene expression like PIM kinases and SOCS genes. STAT5 and PIM kinases have been shown to play a crucial role in the FLT3-ITD mediated transformation. On the other hand, the role of SOCS proteins in FLT3-ITD mediated transformation has not been studied to date. SOCS proteins are part of a negative feedback mechanism that controls Jak kinases downstream of cytokine receptors. One of the SOCS family members, SOCS1 has been reported to suppress oncogenecity of several activating kinases implicated in hematologic malignancies. In this thesis the role of these SOCS proteins in FLT3-ITD mediated transformation (in vitro) and leukemogenesis (in vivo) is systematically explored. Expression of FLT3-ITD in cell lines of myeloid (32D) and lymphoid (Ba/F3) origin, led to CIS, SOCS1 and SOCS2 expression. FLT3-ITD expression in primary murine bone marrow stem/progenitor cells led to a 59 fold induction of SOCS1 expression. Furthermore, FLT3-ITD positive AML cell lines (MV4-11, MOLM-13) show kinase dependent CIS, SOCS1, and SOCS3 expression. Importantly SOCS1 is highly expressed in AML patients with FLT3-ITD compared to healthy individuals. SOCS1 protein was expressed in FLT3-ITD transduced murine bone marrow stem cells and SOCS1 expression was abolished with kinase inhibition in MOLM-13 cell line. In conclusion, SOCS1 was highly regulated by FLT3-ITD in myeloid, lymphoid cell lines, in bone marrow stem/progenitors and in AML patient samples. SOCS1 co-expression did not affect FLT3-ITD mediated signaling and proliferation, but abolished IL-3 mediated proliferation and protected 32D cells from interferon-α and interferon-γ mediated growth inhibition. FLT3-ITD expressing 32D cells showed diminished STAT1 activation in response to interferons (α and γ). Alone, SOCS1 strongly inhibited cytokine induced colony formation of bone marrow stem and progenitors, but not FLT3-ITD induced colony formation. Most importantly, in the presence of growth inhibitory interferon-γ, SOCS1 co-expression with FLT3-ITD led to increased colony formation compared to FLT3-ITD alone. Taken together, FLT3-ITD induced and exogenously expressed SOCS1, shielded cells from external cytokines, signals, while not affecting FLT3-ITD induced proliferation/signaling. In further experiments the in vivo effects of SOCS1 were studied in a bone marrow transplantation model. SOCS1 bone marrow transplants were unable to engraft/proliferate in mice. FLT3-ITD was shown to induce a myeloproliferative disease. Both control (empty vector), SOCS1 transplanted mice were normal and did not show any disease phenotype. FLT3-ITD alone and SOCS1 co-expressing FLT3-ITD developed either myeloproliferative disease or acute lymphoblastic leukemia with equal distribution. SOCS1 co-expression with FLT3-ITD led to a decreased latency. Mice transplanted with FLT3-ITD alone and SOCS1 co-expressing FLT3-ITD displayed enlarged spleens, liver and hypercellular bone marrow indicating infiltration of leukemic cells. Mice were also anemic and showed decreased platelet counts. Importantly SOCS1 co-expression particularly shortened the latency of myeloproliferative disease but not of acute lymphoblastic leukemia. In summary, in the context of FLT3-ITD, SOCS1 acts as a ‘conditional oncogene’ and cooperates with FLT3-ITD in the development of myeloproliferative disease. With these data we propose the following model: FLT3-ITD induces SOCS gene expression, which shields cells against proliferation and differentiation signals from cytokines, while not affecting FLT3-ITD mediated proliferative signals. This leaves cells under the dictate of FLT3-ITD thereby contributing to leukemogenesis. Similar to FLT3-ITD, BCR/ABL (P190) (an oncogenic fusion kinase often found in acute lymphoblastic leukemia) induces SOCS gene expression in K562 and long-term cultured cells from patients with acute lymphoblastic leukemia. SOCS1 co-expression does not affect BCR/ABL mediated proliferation while abrogating IL-3 mediated proliferation. These findings suggest that SOCS proteins may play a general co-operative role in the context of oncogenes which aberrantly activate STAT3/5 independently of JAK kinases. This study reveals a novel molecular mechanism of FLT3-ITD mediated leukemogenesis and suggests SOCS genes as potential therapeutic targets.Akute Leukämien sind unbehandelt tödlich verlaufende, hämatologische Erkrankungen, bei denen es zu einer Anreicherung unreifer und funktionsloser Blasten im Knochenmark kommt, was wiederum mit der gesunden Hämatopoese interferiert. Ursache dieser Leukämien sind chomosomale Translokationen oder Funtionsgewinn- bzw. Funktionsverlustmutationen. Die Mehrheit dieser Mutationen tritt in Genen auf, die Proliferation und/oder Differenzierung regulieren. Im Rahmen dieser Dissertation wurde die Rolle einer dieser Mutationen der Rezeptortyrosinkinase FLT3 in der Leukämogenese bearbeitet, genannt FLT3-ITD (interne Tandemduplikation). FLT3 wird in frühen hämatopoetischen Stamm- und Progenitorzellen exprimiert und spielt eine wichtige Rolle für das Überleben und die Proliferation lymphatischer und myeloischer Linien. Die Bindung des FLT3 Liganden an den Wildtyp-FLT3 Rezeptor führt zur dessen Dimerisierung und Aktivierung, wobei diese Aktivierung wiederum unterschiedliche Signalwege wie z.B. PI3K/Akt und Erk aktiviert. FLT3-ITD ist eine aktivierende Mutation der FLT3 Rezeptortyrosinkinase, die bei etwa 25 % der AML-Patienten gefunden wird und zur unkontrollierten Proliferation leukämischer Blasten führt. Diese Mutation führt zu einer Ligand-unabhängigen, konstitutiv aktiven Form des Rezeptors, so dass die nachfolgenden Signalwege (PI3K/Akt, Erk und STAT5) permanent angeschaltet sind. Ein Genexpressionsprofil in FLT3-ITD exprimierenden 32D Zellen im Vergleich zu Ligand aktivierten Wildtyp-FLT3 exprimierenden Zellen zeigt eine erhöhte Expression von STAT5 Zielgenen wie PIM Kinasen und SOCS Proteinen. Interessanterweise aktiviert FLT3-ITD STAT5 dabei unabhängig von Jak und Src Kinasen und verleiht IL-3 abhängigen Zelllinien wie 32D und Ba/F3 ein Faktor unabhängiges Wachstum. Weiterhin verursacht eine FLT3-ITD Expression im Gegensatz zum Wildtyp-FLT3 in Maustransplantationsexperimenten eine myeloproliferative Erkrankung. Vergleichbar mit FLT3-ITD ist BCR/ABL auch ein onkogenes Fusionsprotein, das durch eine Translokation zwischen den Chromosomen 9 und 22, bezeichnet als t(9;22), zustande kommt. Das BCR/ABL Protein wird in ca. 90 % aller chronischen myeloischen Leukämien (CML) und in 10-20 % aller akuten lymphatischen Leukämien (ALL) gefunden. Wie FLT3-ITD verleiht auch BCR/ABL 32D und Ba/F3 Zellen ein IL-3 unabhängiges Wachstum. Außerdem führt es zu einer konstitutiven Aktivierung der PI3K/AKT, Ras/MAPK und STAT5 Signalwege. Die BCR/ABL vermittelte Aktivierung von STAT5 erfolgt hierbei entweder durch direkte Phosphorylierung oder über die Src Kinase HCK. Im Knochenmarktransplantationsmodell induziert BCR/ABL eine myeloproliferative Erkrankung, die einer CML ähnelt. Die Produktion hämatopoetischer Zellen unterliegt einer strengen Kontrolle durch hämatopoetische Zytokine. Die Zytokinrezeptoren besitzen keine intrinsische Kinaseaktivität. Die Signalweiterleitung erfolgt hier über Jak Kinasen. Auf diese Weise kontrollieren Zytokinrezeptoren wichtige Prozesse des Immunsystems und der Blutzellhomöostase. SOCS Proteine sind Teil eines negativen Rückkopplungsmechanismus, der die Aktivierung von STAT Proteinen durch Zytokinrezeptoren kontrolliert. SOCS Proteine binden an Jak Kinasen und inhibieren deren Kinaseaktivität über verschiedene Mechanismen, was zur Termination der Zytokinsignale führt. Von einem Mitglied der SOCS Familie, SOCS1, ist bekannt, dass es durch die Hemmung einiger aktivierender Kinasen bei hämatologischen Erkrankungen tumorsupressive Eigenschaften hat. Die Rolle der SOCS Proteine in der FLT3-ITD vermittelten Transformation ist bis heute nicht hinreichend analysiert. Insbesondere ist unklar wie transformierte Zellen der strengen Kontrolle des Zytokinnetzwerks entgehen können, das normalerweise die korrekte Funktion hämatopoetischer Zellen garantiert. In der vorliegenden Arbeit wurde die Rolle von SOCS Proteinen in der FLT3-ITD vermittelten Transformation (in vitro) und Leukämieentstehung (in vivo) systematisch untersucht. Weiterhin wurde die SOCS Genexpression und die Folgen der BCR/ABL vermittelten Transformation analysiert. Schlussfolgerung 1: FLT3-ITD induziert die Expression von SOCS Genen in Zelllinien und murinen Knochenmarkzellen; SOCS1 ist in Patienten mit FLT3-ITD induziert. Zunächst wurden bestehende microarray Daten durch quantitative real time PCR validiert. Die Expression von FLT3-ITD in myeloischen (32D) und lymphatischen (Ba/F3) Zelllinien induziert die Expression von CIS, SOCS1 und SOCS2. In primärem murinen Knochenmarksstamm-/progenitorzellen führt die Expression von FLT3-ITD zu einem sehr starken Anstieg der SOCS1 Expression (59-fach). Zudem zeigen Zelllinien, die von FLT3-ITD positiven AML-Patienten gewonnen wurden (MV4-11, MOLM-13), eine Kinase abhängige CIS, SOCS1 und SOCS3 Expression. Interessanterweise wird außerdem SOCS1 im Knochenmark von AML-Patienten mit FLT3-ITD Mutationen im Vergleich zu Kontrollen von gesunden Spender stark überexprimiert. Das SOCS1 Protein wird ferner in FLT3-ITD transduziertem murinen Knochenmark exprimiert und die Expression geht in MOLM-13 Zellen nach Behandlung mit Kinaseinhibitoren verloren. Zusammenfassend wird die Expression von SOCS1 in hohem Maße durch FLT3-ITD in myeloischen und lymphatischen Zelllinien sowie in hämatopoetischen Stamm- und Progenitorzellen und AML-Patienten hochreguliert. Schlussfolgerung 2: Die SOCS1 Expression verhindert Zytokinrezeptor vermittelte Effekte aber nicht die FLT3-ITD induzierte Signalgebung und Proliferation. Aufgrund der hohen SOCS1 Induktion durch FLT3-ITD im primären murinen Knochenmark und in Patientenproben wurde dessen Rolle in der FLT3-ITD vermittelten Transformation untersucht. Die Koexpression von SOCS1 beeinträchtigt nicht die durch FLT3-ITD induzierten Signalwege (MAPK/ERK, PI3K/AKT und STAT5) oder die Proliferation, jedoch unterbindet es die IL-3 vermittelte Proliferation und schützt 32D Zellen vor der Wachstumshemmung durch Interferon α und γ. So zeigten FLT3-ITD exprimierende 32D Zellen eine verminderte STAT1-Aktivierung durch Interferon α und γ. In einem kompetitiven Proliferationsassay wirkte die SOCS1 Expression alleine wachtumsinhibierend, koexprimiert mit FLT3-ITD trat allerdings der gegenteilige Effekt auf. Im murinen Knochenmark führte SOCS1 zu einer starken Hemmung der Zytokin induzierten Kolonienbildung hämatopoetischer Stamm- und Progenitorzellen, jedoch nicht der FLT3-ITD induzierten Kolonienbildung, was auf eine SOCS1 Resistenz von FLT3-ITD hindeutet. Interessanterweise führte SOCS1 in Anwesenheit des wachstumhemmenden Interferons γ zu einer Verstärkung der FLT3-ITD induzierten Kolonienbildung. Zusammenfassend führt die FLT3-ITD induzierte oder exogene SOCS1 Expression zu einer Abschirmung der Zellen von exogenen Zytokinsignalen, während die FLT3-ITD vermittelten, zellulären Effekte unbeeinflusst bleiben. Schlussfolgerung 3: SOCS1 Expression verstärkt die myeloproliferative Erkrankung, die durch FLT3-ITD induziert wird: SOCS1 als „konditionales Onkogen“. Für FLT3-ITD wurde bereits die Entstehung einer myeloproliferativen Erkrankung und einer akuten lymphozytischen B- und T-Zellleukämie im murinen Knochenmark gezeigt. Im transgenen Mausmodell löst FLT3-ITD entweder eine myeloproliferative oder eine lymphatische Erkrankung aus. In dieser Arbeit wurde die Rolle von SOCS1 in der FLT3-ITD vermittelten Leukämie im Knochmarktransplantationsmodell in vivo untersucht. Die Übertragung der in vitro gefundenen Effekte von SOCS1 auf FLT3-ITD in das Mausmodell in vivo zeigte, dass es bei der Transplantation von SOCS1 exprimierendem Knochenmark nicht zu einem Anwachsen oder zur Proliferation in der Maus kommt, was einen kompetitiven Wachstumsnachteil dieser Zellen demonstriert. SOCS1 und FLT3-ITD koexprimierende Transplantate zeigten jedoch eine höhere Proliferationsrate in vivo als ausschließlich Flt3-ITD exprimierende Zellen. Sowohl Kontroll- als auch SOCS1 transplantierte Mäuse waren unauffällig und ohne erkennbaren Phänotyp. Mäuse mit Flt3-ITD transduzierten oder FLT3-ITD und SOCS1 koexprimierenden Transplantaten entwickelten zu gleichen Teilen entweder eine myeloproliferative Erkrankung oder eine akute lymphatische Leukämie. Die Koexpression von SOCS1 mit FLT3-ITD führte zu einer verkürzten Latenzzeit. Mäuse mit FLT3-ITD transduzierten Transplantaten (mit oder ohne SOCS1) zeigten vergrößerte Milzen und Lebern sowie ein hyperzelluläres Knochenmark als Anhaltspunkt für eine Infiltration mit leukämischen Blasten. Ferner waren die Mäuse anämisch und hatte eine verminderte Thrombozytenzahl. Interessanterweise verkürzte die Koexpression von SOCS1 die Latenzzeit für die myeloproliferative Erkrankung, aber nicht für die akute lymphatische Leukämie. Zusammenfassend wirkt SOCS1 im Zusammenhang mit FLT3-ITD als konditionales Onkogen und kooperiert mit FLT3-ITD bei der Entstehung der myeloproliferativen Erkrankung. Schlußfolgerung 4: SOCS Gene werden durch BCR/ABL induziert. SOCS1 Expression beeinflusst nicht die BCR/ABL vermittelte Transformation. Eine Aktivierung von STAT5 wurde im Zusammenhang mit mehreren hämatologischen, malignen Erkrankungen, die durch onkogene Kinasen ausgelöst wurden, beobachtet. Da BCR/ABL STAT5 stark aktiviert, wurde die SOCS Genexpression in BCR/ABL positiven Zelllinien und im Knochenmark mittels quantitativer PCR analysiert. Im Vergleich zu BCR/ABL negativen ALL Zellen wurde in BCR/ABL positiven, primären ALL Zellen eine Induktion von CIS, SOCS2 und SOCS3 beobachtet. Die Inhibition der ABL Kinaseaktivität in BCR/ABL positiven, primären ALL Zellen durch Zugabe von Imatinib führte zu einer Verminderung der SOCS Expression, was eine Kinase abhängige Expression dieser Proteine demonstriert. Ebenso konnte auch in der BCR/ABL positiven Zelllinie K562 durch die Inhibition der ABL Kinaseaktivität mittels Imatinib eine Reduktion von CIS, SOCS1 und SOCS3 demonstriert werden. Die Expression von BCR/ABL im primären murinen Knochenmark induzierte eine hohe Expression von CIS, SOCS1 und SOCS3. Die Koexpression von SOCS1 beeinflusste nicht die BCR/ABL vermittelte Proliferation, während aber die IL-3 vermittelte Proliferation unterdrückt wurde, was auf eine SOCS1 Resistenz von BCR/ABL deutet. Mit diesen Ergebnissen schlagen wir ein Modell vor, bei dem FLT3-ITD die Expression von SOCS Genen induziert, welche wiederum die Zelle von pro- oder antiproliferativen sowie Differenzierungssignalen exogener Zytokine abschirmen, ohne die FLT3-ITD vermittelten Signale zu beeinflussen. So verbleibt die Zelle einzig unter der Kontrolle von FLT3-ITD, was zur Leukämieentstehung beiträgt. Dieses Model erklärt das ‚SOCS Paradoxon’, in dem die scheinbar gegensätzlichen Ergebnisse der erhöhten Expression der Tumorsupressorproteine der SOCS Familie im Kontext mit onkogenen Kinasen wie FLT3-ITD stehen. Die vorliegende Untersuchung zeigt einen neuen molekularen Mechanismus der FLT3-ITD vermittelten Leukämieentstehung. Mechanistisch setzen SOCS Proteine die externe Kontrolle durch Zytokine außer Kraft und wirken so positiv in der Leukämogenese. Dies deutet auf eine Rolle von SOCS Proteinen als mögliche therapeutische Zielstrukturen hin. Diese Beobachtungen legen nahe, dass SOCS Proteine generell mit Onkogenen kooperieren, die eine aberrante Aktivierung von STAT3/5 unabhängig von JAK Kinasen, induzieren

    User Pairing and Power Allocation for IRS-Assisted NOMA Systems with Imperfect Phase Compensation

    Get PDF
    In this letter, we analyze the performance of the intelligent reflecting surface (IRS) assisted downlink non-orthogonal multiple access (NOMA) systems in the presence of imperfect phase compensation. We derive an upper bound on the imperfect phase compensation to achieve minimum required data rates for each user. Using this bound, we propose an adaptive user pairing algorithm to maximize the network throughput. We then derive bounds on the power allocation factors and propose power allocation algorithms for the paired users to achieve the maximum sum rate or ensure fairness. Through extensive simulations, we show that the proposed algorithms significantly outperform the state-of-the-art algorithms
    corecore